Problem Set 2: Linear Programming P. Dybvig

At the start of class next week, submit only problem 3 for grading.

1. Standard form

Convert the following LPs to standard form. Be sure to explain the relation between the variables in the new and old problems.

```
Choose x_1 \ge 0 and x_2 \ge 0 to maximize x_1 + x_2, subject to x_1 \le 6 and x_1 + 2x_2 \le 3.
```

```
Choose x_1 and x_2 to maximize 2x_1 + x_2, subject to x_2 - x_1 \le 1, x_1 - x_2 \le 1, x_2 + x_1 \ge -1, and -x_1 - x_2 \ge -1.
```

2. Asset-Liability Application and Lagrange Multiplier

Modify the pension fund example from class (spreadsheet available on the class page) to include an additional bond paying 14 each in years 1 through 8.

- A. First, use the Lagrange multipliers to show that if the bond costs 100 initially it is too expensive and will not be held.
- B. Verify this by adding the bond with price 100 in solver and checking that the solution is unchanged.
- C. Try instead adding the bond with price 90 and verify that the solution changes.
- D. Describe in words the original solution and how the solution changes when the new bond is introduced. (This should be like the description you would give a boss who wants a verbal description, not all the quantitative details.)

3. Asset-Liability Application and Lagrange Multiplier

Modify the pension fund example from class (spreadsheet available on the class page) to include 2-year lending at a fixed interest rate in every year.

- A. First, use the Lagrange multipliers to show that availablity each period of riskless lending at 4% at a term of two years changes the solution.
- B. Verify this by adding riskless 2-year lending at 4% in each year and verify that the solution changes.
- C. Describe in words the original solution and how the solution changes when a new lending opportunity is introduced.
- D. Try instead adding riskless 2-year lending at 3% and show that the solution does not change.
- 4. Challenger: approximating a concave function

A concave differentiable function can be written as the minimum of affine functions.¹ and specifically if u(x) is a concave differentiable function defined on an open convex set X, we can write

$$u(x) = \min\{u(\hat{x}) + \nabla u(\hat{x})^{\top} (x - \hat{x}) | \hat{x} \in X\}$$

or if x is one-dimensional,

$$u(x) = \min\{u(\hat{x}) + u'(\hat{x})(x - \hat{x}) | \hat{x} \in X\}.$$

If we can take a grid of points $G = \{g_1, ..., g_n\}$, we can approximate $u(x) \approx \min\{u(\hat{x}) + u'(\hat{x})(x - \hat{x}) | \hat{x} \in G\}$. Use this approximation to find an LP that approximates the following nonlinear program.

¹A convex function is the maximum of affine functions. For non-differentiable functions, substitute an element from the subgradient correspondence for the gradient or derivative.

```
Given W_0,
choose x_1, \ldots, x_N to
maximize \sum_{i=1}^N \pi_i u(x_i), subject to
\sum_{i=1}^N p_i x_i = W_0.
```

What special care has to be taken to be sure the approximate problem is unbounded and the solution is nonnegative?