Problem Set 2: Optimization FIN 550: Numerical Methods and Optimization in Finance P. Dybvig

Hand in your answers to Problem 2 (and optionally the answer to the "extrafor-experts" Problem 3) in class on Nov. 13. The answer to Problem 1 will be posted on the web site. If you choose to answer the challenger – Problem 4 – e-mail the answer to me.

1. Consider the following maximization problem:

```
Choose c_1 and c_2 to
maximize 3 \log(c_1) + 2 \log(c_2)
subject to:
c_1 + c_2 \le 100
and
40 \le c_2
```

- A. Write the constraints in the appropriate form for the Kuhn-Tucker conditions. Be careful to get the signs correct for the constraint functions.
- B. Compute the gradient of the objective function and the gradient of each of the constraint functions.
- C. Write down the Kuhn-Tucker conditions.
- D. Solve the problem.
- E. Prove that the solution is correct. (Probably, you will want to prove that a solution to the Kuhn-Tucker conditions with positive c_1 , and c_2 satisfying the constraints of the problem must be an optimal solution.)
- 2. Consider a model of the stock market modeled using a complete market (Arrow-Debreu world) with four states of nature. The state probabilities are $\pi_1 = 0.1$, $\pi_2 = 0.4$, $\pi_3 = 0.4$, and $\pi_4 = 0.1$, and the corresponding state prices are $p_1 = 0.05$, $p_2 = 0.3$, $p_3 = 0.4$, and $p_4 = 0.15$. Assuming square root utility and initial wealth of \$100,000 and minimum consumption level of \$100,000, we have the following portfolio optimization problem:

Choose state-dependent consumption c_1 , c_2 , c_3 , and c_4 to maximize expected utility $\sum_{i=1}^4 \pi_i \sqrt{c_i}$ subject to the budget constraint, $\sum_{i=1}^4 p_i c_i \leq 100000$ and the minimum consumption constraints, $(\forall i) c_i \geq 100000$.

- A. Write the constraints in the appropriate form for the Kuhn-Tucker conditions. Be careful to get the signs correct for the constraint functions.
- B. Compute the gradient of the objective function and the gradient of each of the constraint functions.
- C. Write down the Kuhn-Tucker conditions.
- D. Solve the problem.
- E. Prove that the solution is correct. (Probably, you want to prove that a solution to the Kuhn-Tucker conditions with positive c_1 , c_2 , c_3 , and c_4 satisfying the constraints of the problem must be an optimal solution.)
- 3. (extra for experts optional problem for students of superior ambition or background) Consider the following problem:¹

```
Choose \theta \in \Re to maximize \sin(\theta) subject to \tan(\Pi\theta) = 1.
```

Show that this problem is feasible and bounded, but that there does not exist $\theta \in \Re$ that maximizes the objective function.

There is a hint for this problem at the following URL:

http://dybfin.wustl.edu/teaching/finopt12/homeworks/fo12hw2/hw2p3hint.pdf

¹In this problem, Π is the constant ≈ 3.14159 that is the ratio of the circumference of a circle to its diameter, and the sine and tangent functions take arguments in radians.

4. (challenger – very tough problem, strictly an individual effort) Construct a \mathcal{C}^{∞} function $f: \Re \to \Re$ such that (a) f(0) = 0, (b) $(\forall x \neq 0) f(x) > 0$, and (c) all derivatives of f are zero at zero.