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A Canonical Optimization Problem

Choose x ∈ ℜN to
minimize f (x)
subject to (∀i ∈ E)gi(x) = 0, and

(∀i ∈ I)gi(x) ≥ 0.

x = (x1, ..., xN) is a vector of choice variables.
f (x) is the scalar-valued objective function.
gi(x) = 0, i ∈ E are equality constraints.
gi(x) ≥ 0, i ∈ I are inequality constraints.
E ⋂ I = ∅

• Maximizing f (x) is equivalent to minimizing −f (x).

• Problems in finance are usually written as maximizations.

• Pick the most natural version to communicate your results.

• Sometimes constraints on x are shown separately when specifying the domain
of x, e.g., x ∈ ℜN

+ , x ∈ [0, 1]N , or x ∈ {0, 1}N .



Solutions

• A feasible solution (or feasible choice) x satisfies the constraints but may not
maximize the objective function. A problem is said to be feasible if it has a
feasible solution.

• An optimal solution (or optimal choice) x is feasible and x has the smallest
value of the objective function (largest if maximizing) of all feasible solutions.
(Also, commonly called “solution” but the book uses this for a candidate that
need not be feasible or optimal.)

• An interior solution is an optimal solution at which no constraints are binding.

• A corner solution is an optimal solution at which constraints are binding.

• A local optimum is a feasible choice x∗ that, for some ε > 0, is optimal in
the problem with the additional constraint ‖x − x∗‖ ≤ ε.

• value is f (x∗) for optimal x∗



Drawing Pictures: Solutions

• local optimum

• global optimum

• unbounded problem

• boundary solution

• interior solution



Finding a Sensible Optimization Problem – Example

Find a portfolio strategy for an aggressively managed fund doing market timing.
Your colleagues have a model for how expected return evolves as a function of
past returns in a binomial model. The reduced form of the model says that there
are N >> 0 final states of nature and each state of nature n has a price pn > 0
and probability πn > 0, where the states have been ordered so that pn/πn is
strictly increasing in n (the cheapest states are first). Given initial wealth W0,
you should find an optimal strategy that gives the payoff xn in state n that
satisfies the budget constraint ∑N

n=1 pnxn = W0.



First Model: In-Class Exercise

Given pn > 0 and πn > 0 for n = 1, ..., N , and W0 > 0,
choose x = (x1, ..., xN) ∈ ℜN to
maximize ∑N

n=1 πnxn

subject to ∑N
n=1 pnxn = W0.

Is this optimization problem feasible?

Does this optimization problem have an optimal solution?

If so, does the optimal solution make sense?

hint: consider changing just two xis.



Second Model: In-Class Exercise

Given pn > 0 and πn > 0 for n = 1, ..., N , and W0 > 0,
choose x = (x1, ..., xN) ∈ ℜN to
maximize ∑N

n=1 πnxn

subject to ∑N
n=1 pnxn = W0 and

(∀n)xn ≥ 0

Is this optimization problem feasible?

Does this optimization problem have an optimal solution?

If so, does the optimal solution make sense?

hint: look for a corner solution



Kuhn-Tucker Conditions

∇f (x∗) = ∑

i∈E
⋃

I λi∇gi(x
∗)

(∀i ∈ I)λi ≥ 0
λigi(x

∗) = 0

The feasible solution x∗ is called regular if the set {∇gi(x
∗)|gi(x

∗) = 0} is a
linearly independent set. In particular, an interior solution is always regular.

If x∗ is regular and f and the gis are differentiable, the Kuhn-Tucker conditions
are necessary for feasible x∗ to be optimal. If the optimization problem is convex
(defined by f (x) and all gi(x)’s are convex functions for inequality constraints
and affine1 functions for equality constraints), then the Kuhn-Tucker conditions
are sufficient for an optimum. (Recall that a function q(x) is called convex if, for
all x1 and x2 in the domain of q, and for all α ∈ (0, 1), q(αx1 + (1 − α)x2) ≤
αq(x1) + (1 − α)x(x2).)

The solution to a convex optimization problem is unique if the objective function
is strictly convex.

1An affine function is linear plus a constant. Some authors define linear as the same as this, others take the constant to be zero in a linear function.



Drawing Pictures: Kuhn-Tucker Conditions

• interior solution

• single constraint binding

• multiple constraints binding

• inflection point

• irregular point



Third Model: In-Class Exercise

Given pn > 0 and πn > 0 for n = 1, ..., N , and W0 > 0,
choose x = (x1, ..., xN) ∈ ℜN

++ to
maximize ∑N

n=1 πn log(xn)
subject to ∑N

n=1 pnxn = W0.

Is this optimization problem feasible?

Does this optimization problem have an optimal solution?

If so, does the optimal solution make sense?

hint: solve the Kuhn-Tucker conditions



Shadow Prices

The λi’s in the objective function are sometimes called Lagrange multipliers be-
cause of their role in the Lagrangian function that is related to the Principle

of Least Action in physics, or dual variables because they are related to linear
functionals at the solution. More interestingly for us, the λi’s are shadow prices
that measure how much we would pay at the margin to relax the constraint. This
interpretation is useful for doing sensitivity analysis to the level of the constraint.
For example, if λi = 0, the constraint is not (strictly) binding and relaxing the
constraint does not affect the solution. If λi = 10, that means that relaxing the
constraint by a small amount ε > 0 should reduce the objective function (in a
minimization) by 10ε. This sort of sensitivity analysis is really useful because
usually some of the inputs are guesses or policy decisions at another level and we
need to know how much they matter.

Disclaimer: this discussion assumes a convex optimization (or nonlocal things
might matter) at a regular point (or else the constraint might be redundant).



von Neumann-Morgenstern Preferences

Choosing to maximize the expectation of log(x) is a special case of von Neumann-
Morgenstern preferences. The general form of these preferences maximizes the
expectation of u(x) where u(·) is the von Neumman-Morgenstern utility function.
These preferences were given an axiomatic foundation by John von Neumann and
Oskar Morgenstern, and are the most commonly-used preferences in financial
research. The most popular preference assumption in practice is mean-variance
utility, which has a lot of conceptual problems but is easy to work with. Academic
researchers are looking at many other preference assumptions that go beyond
these traditional models by including such features as preference for the timing of
resolution of uncertainty and ambiguity aversion. These topics in Choice Theory
are interesting but beyond the scope of this course.



Convex Optimization: Intuition

The Kuhn-Tucker conditions are local conditions that only look at the value and
derivative of the objective and contraint functions at a point. For a convex
optimization problem, this is good enough because any local solution is a global
solution.

For a convex optimization problem, the feasible set is convex, that is, for all
feasible x1 and x2 and for all α ∈ (0, 1), αx1 + (1 − α)x2 is also feasible. (This
follows easily from the definitions.) With convexity of the objective function,
this implies that if another feasible choice is better, so are many nearby feasible
choices. (This also follows easily from the definitions.) Therefore, any point that
is not a global optimum is not a local optimum, which is equivalent to saying
that any point that is a local optimum is also a global optimum.



Drawing Pictures: Convex and Nonconvex Optimization

• local optimum = global optimum?

• typical algorithm: gradient and Newton-Raphson



Why Convexity Matters in Practice

With some interesting exceptions (such as integer linear programs and certain
continuous-time dynamic problems), choice problems we can solve reliably are
convex optimization problems. These problems tend to be easier to solve reliably
because a choice is optimal if and only if it is optimal locally (within some
neighborhood) and the algorithm is not going to be confused by a local optimum.
Also, optimization algorithms have a clear path through the feasible set to the
optimum and globally good local indications about how to make way towards an
optimum.

A sufficiently smooth function of one variable is convex if its second derivative is
everywhere nonnegative. A sufficiently smooth real-valued function of many vari-
ables is convex if its matrix of second derivatives is everywhere positive semidef-
inite (all eigenvalues are nonnegative). If your choice problem is convex, you
have some reason to expect your nonlinear optimization problem will converge
on an optimal solution, and if it is not convex, you have every reason to think
numerical optimization might have problems and maybe you should double-check
the solution..



Mean-variance Analysis: First Pass

Choose portfolio weights x1, ..., xN to
maximize x0rF +

(

∑N
i=1 xiµi

)

− (1/2)γ
(

∑N
i=1

∑N
j=1 xiσijxj

)

, subject to
∑N

i=0 xi = 1.

µ = (µi): vector of means
Σ = (σij): covariance matrix, positive definite
γ > 0: risk aversion parameter



Mean-variance Analysis: Solution and Observation

First-order (Kuhn-Tucker) condition:

µ0 = λ

µi = γ
N
∑

j=1

σijxj + λ for i > 0

or in vector notation (using 1 to denote a vector of 1s of length N):

µ = rF1 + γΣ⊤x

which implies

x =
1

γ
Σ−1(µ − rF1)

This is the most common financial application of optimization, but it is rarely
done competently because people do not use reasonable choices of µ and Σ
(sample estimates are dominated by estimation error) and compensate by adding
ad hoc constraints that help but do not fix the problem.



Summary

• Optimization problems have choice variables, objective functions and con-
straints

• Optimal solutions and feasible solutions, interior solutions and corner solu-
tions, local solutions

• Kuhn-Tucker conditions

• Shadow prices are useful for sensitivity analysis

• Convex optimization is safest


