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Why Dynamic Models?

It should perhaps be obvious that investments in actuality span many short pe-
riods. In general, there will be connections across the periods. If there is con-
sumption withdrawal, then there is the question of how much to take out for use
this period and how much to leave in the portfolio for future use. Even when
we are accumulating to a fixed horizon (for example, building wealth that will be
paid out in a lump sum at retirement), there is a question of whether investment
proportions should vary depending on time or investment performance. Finally,
even given fixed proportions, we want to learn what our choices about asset
proportions imply about the distribution of wealth available at the end.



Fixed investment proportions

We are going to start with the simplest dynamic model, in which we take in-
vestment proportions as fixed. We will take very simple assumptions; volatilities
and expected returns are known in advance and do not vary over time. Literally
speaking, these are not the most accurate assumptions we could make, but the
results we obtain will not mislead us.



Multiperiod returns

If we start with initial wealth W0 and invest in a portfolio whose rate of return
in each period t is Rt, then the wealth after T periods is given by:

WT = W0
T
∏

t=1
(1 + Rt).

In statistics, we are more familiar with dealing with sums than with products,
which we can do by taking logarithms. (We could use any base for the logarithms,
but for convenience we will use base e. This is convenient because, for R not
too large, log(1 + R) ≈ R when the logarithm is in base e.)

log(WT ) = log(W0) +
T
∑

t=1
log(1 + Rt).



The distribution of multiperiod returns: fixed proportions

Now, let us assume the returns in each period are independent and have the
same distribution. Then, if Rt has mean µ and variance V , log(1 + Rt) has a
mean of approximately µ − V/2 and a variance of V . (Take my word or use a
Taylor series expansion.) Therefore, in a sense I am not making precise, log(WT )
has an approximate normal distribution with mean log(W0) + (µ − V/2)T and
variance V T . In fact, these expressions are exact in the continuous-time model
used in the very successful Black-Scholes formula, so this is likely to be a very
reasonable approximation over short time intervals. Using historical averages for
mean and variance will tend to overstate average performance and understate
uncertainty, since we are after all studying the US stock market because it has
been more successful than average. Also, assuming variance is constant may tend
to understate volatility. Nonetheless, these calculations are reasonable guesses
and are much better than, for example, just assuming the mean return will hold
for sure!



Stock Market vs. T-Bills

What is the probability that the stock market will outperform T-Bills at various
horizons? The previous slide allows us to give a reasonable answer. Take the
riskfree rate to be 5%, the mean stock market return to be 15%, and the market
standard deviation to be 25%, all on an annual basis. Then the analysis of the
previous slide tells us that for investing in the market, log(WT/W0) has mean
(15%− .03125)T and standard deviation

√
.0625T . Using the same analysis says

that for rolling over T-Bills, log(WT/W0) has mean 5%T and standard deviation
0. By the properties of a normal distribution, we have that the probability that
the market will outperform T-Bills over a given period of length T is the same
as the probability that a unit normal random variable is bigger than −(15% −
.03125− 5%)T/

√
.0625T , which can be obtained from standard tables. This is

tabulated on the following slide.



Probability that the market outperforms Treasuries

# years Treasuries risky asset log(WT/W0) prob(Mkt > Trs)
log(WT/W0) mean std

1/12 .0042 .0099 .0722 .532
1/2 .0250 .0594 .1768 .577
1 .0500 .1188 .2500 .608
3 .1500 .3562 .4330 .683
5 .2500 .5938 .5590 .731
10 .5000 1.1875 .7906 .808
30 1.5000 3.5625 1.3693 .934

This table is based on historical numbers being good predictors of future returns.
Personally, I think those numbers overstate reasonable market returns because
we are studying a successful market because it was successful. Even given these
optimistic numbers, it is a bad idea to take as a sure thing that the realized
returns will be bigger than we would get in Treasuries, even over decades!



Log-optimal policy

The log-optimal policy is the strategy that maximizes the expected log of terminal
wealth, and is also the strategy that maximizes the long-term growth rate of the
portfolio’s value. Some people have argued that this is the best portfolio for
anyone with a long horizon, since this strategy will eventually outperform any
other strategy. The problem with this reasoning is that we might have to wait
hundreds or thousands of years for the superior performance. In the meantime,
the performance could be disastrous.

Among fixed-proportion strategies, the expected log of terminal wealth is given by
E[log(WT )] = log(W0)+(r+w1(µ−r)−w2

1s
2/2)T , where r is the riskfree rate,

µ is the mean return on the market, s is the standard deviation of the market,
and T is the time horizon. This expected log of terminal wealth is maximized
by choosing a portfolio weight w1 = (µ − r)/s2 in the risky market portfolio.
If µ = 15%, r = 5%, and s = 20%, this implies that .1/.04 = 250% of the
portfolio should be invested in the risky asset, which is a very aggressive policy!



Probability that the log-optimal policy outperforms Treasuries

# years Treasuries log optimal (l.o.) log(WT/W0) prob(l.o. > Trs)
log(WT/W0) mean std

1/12 .0042 .0146 .1443 .529
1/2 .0250 .0875 .3536 .570
1 .0500 .1750 .5000 .599
3 .1500 .5250 .8660 .667
5 .2500 .8750 1.1180 .711
10 .5000 1.7500 1.5811 .785
30 1.5000 5.2500 2.7386 .915

There is little assurance over reasonable horizons that the log-optimal strategy will
outperform Treasuries, let alone other portfolio strategies taking some advantage
of the higher average returns to stocks.



A curious feature of fixed-proportions strategies

When the mean and variance of stock returns are constant (as we have been
assuming), there is a very interesting property of fixed-proportion strategies that
is a good approximation in practice. Let MT be the value at time T of a policy of
staying 100% invested in an indexed portfolio of stocks, and let WT be the value
of being invested k% in stocks, each given the same initial investment. Then
WT is approximately proportional to MT

k, or more precisely

WT = W0
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where s2 is the market’s variance and r is the riskfree rate. This formula is exact
in the ideal limit of continuous trading, as in the Black-Scholes model.



And now for something completely different:
a review of binomial option pricing

Why option pricing? Option pricing theory is ideal for analyzing or devising
dynamic trading strategies, since option pricing theory gives us both the value
and the trading strategy for various payoff rules. Many trading strategies such
as portfolio insurance and related strategies were actually motivated by option
pricing models. In general, using option pricing models allows us to customize
our exposure to risk by following an investment strategy that pays off an arbitrary
function of the market value at the end.



The Binomial Option Pricing Model

The option pricing model of Black and Scholes revolutionized a literature previ-
ously characterized by clever but unreliable rules of thumb. The Black-Scholes
model uses continuous-time stochastic process methods that interfere with un-
derstanding the simple intuition underlying these models. We will use instead
the binomial option pricing model of Cox, Ross, and Rubinstein, which captures
all of the economics of the continuous time model but is simple to understand
and use. For option pricing problems not appropriately handled by Black-Scholes,
some variant of the binomial model is the usual choice of practitioners since it is
relatively easy to program, fast, and flexible.

Cox, John C., Stephen A. Ross, and Mark Rubinstein (1979) “Option Pricing: A
Simplified Approach” Journal of Financial Economics 7, 229–263

Black, Fischer, and Myron Scholes (1973) “The Pricing of Options and Corporate
Liabilities” Journal of Political Economy 81, 637–654



Binomial Process (3 periods)

Riskless bond:

1 - r - r2 -r3

Stock (u > r > d):
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Derivative security (option or whatever):
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What is the price of the derivative security?



A Simple Option Pricing Problem in One Period

Riskless bond (interest rate is 0):

100 -100

Stock:

50 ��
�*

HHHj

100
25

Derivative security (on-the-money call option):

? ��
�*

HHHj

50
0

To duplicate the call option with αS shares of stock and αB bonds:

50 = 100αS + 100αB

0 = 25αS + 100αB

Therefore αS = 2/3, αB = −1/6, and the duplicating portfolio is worth 50αS +
100αB = 100/6 = 16 2/3. By absence of arbitrage, this must also be the price
of the call option.



In-class Exercise: One-period Contingent Claim Valuation

Compute the duplicating portfolio and the price of the general derivative security
below. Assume u > r > d > 0.

Riskless bond:

1 -r

Stock:

S ��
�*

HHHj

uS
dS

Derivative security:

??? ��
�*

HHHj

Vu

Vd



Multi-period Valuation and Artificial Probabilities

In general, exactly the same valuation procedure is used many times, taking
as given the value at maturity and solving back one period of time until the
beginning. This valuation can be viewed in terms of state prices pu and pd or
risk-neutral probabilities π∗u and π∗d, which give the same answer (which is the
only one consistent with no arbitrage):

V alue = puVu + pdVd = r−1(π∗uVu + π∗dVd)

where
pu = r−1r − d

u− d
pd = r−1u− r

u− d
and

πu =
r − d
u− d

πd =
u− r
u− d

.



In-class Exercise: Artificial Probabilities

In the binomial model (with parameters u, d, and r), show that the stock and
the bond have the same one-period expected return computed using the artificial
probabilities.

Consider the binomial model with u = 2, d = 1/2, and r = 1. What are the risk-
neutral probabilities? Assuming the stock price is initially $100, what is the price
of a call option with a $90 strike price maturing in two periods? Do the valuation
two ways, using the risk neutral probabilities to solve backwards through the tree,
and directly using the two-period risk neutral probabilities.



Some Orders of Magnitude

• Expected Excess Returns

– Common stock indices: 8–10% per year or 8–10%/250 ≈ 3 or 4 basis
points daily

– Individual common stocks: 50%–150% of the index expected excess return.

• Standard Deviation

– Common stock indices: 20–25% per year or 20–25%/
√

250 ≈ 1–1.5% per
day

– Individual common stocks: 35%–40% per year

Theoretical observation: for the usual case, standard deviations over short periods
are almost exactly the same in actual probabilities as in risk-neutral probabilities.



Binomial Parameters in Practice

Most texts seem to have unreasonably complicated expressions for u, d, and r in
binomial models. From the theory, we know that a good choice is

u = 1 + r ∗∆t + σ ∗
√

∆t

d = 1 + r ∗∆t− σ ∗
√

∆t

with π∗u = π∗d = 1/2 and ∆t the time increment. This has the two essential
features: it equates expected stock and bond returns, and it has the right standard
deviation. In addition, it has a continuous stock price (like Black-Scholes) as a
limit.

One alternative is to choose the positive solution of ud = 1 and u−d = 2σ
√

∆t
(good for option price as a function of time) or a recombining trinomial (good
for including some dependence of variance on the stock price).


