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Problem 1. For

A =

(

3 6

2 1

)

, B =

(

1 0 3 2

0 −1 −1 1

)

, C =









2 4 5

0 3 0

1 0 1









compute

(1)(A + AT )B (2) Determinant of C

and verify your answers using Matlab.

Solution :

(1) (A + AT )B =

(

6 8

8 2

)(

1 0 3 2

0 −1 −1 1

)

=

(

6 −8 10 20

8 −2 22 18

)

(2)|C| = 2 × (−1)1+1

∣

∣

∣

∣

∣

3 0

0 1

∣

∣

∣

∣

∣

+ 4 × (−1)1+2 ×

∣

∣

∣

∣

∣

0 0

1 1

∣

∣

∣

∣

∣

+ 5 × (−1)1+3

∣

∣

∣

∣

∣

0 3

1 0

∣

∣

∣

∣

∣

= 2 × 3 + 5 × (−3) = −9.

Problem 2. Invert the coefficient matrix to solve the following systems of equations

and verify your answers using Matlab:

(1)

2x1 + x2 = 5, x1 + x2 = 3

Solution : The linear system can be written as

(

2 1

1 1

)(

x1

x2

)

=

(

5

3

)

,

so
(

x1

x2

)

=

(

2 1

1 1

)−1(

5

3

)

,

1



using Gaussian Elimination to find the inverse of the coefficient matrix,

(

2 1 | 1 0

1 1 | 0 1

)

−→row(ii)− 1

2
×row(i), 1

2
×row(ii)

(

2 1 | 1 0

0 1 | −1 2

)

−→row(i)−row(ii), 1
2
×row(i)

(

1 0 | 1 −1

0 1 | −1 2

)

,

therefore,
(

x1

x2

)

=

(

1 −1

−1 2

)(

5

3

)

=

(

2

1

)

.

(2)

2x1 + x2 = 4, 6x1 + 2x2 + 6x3 = 20, − 4x1 − 3x2 + 9x3 = 3.

Solution : The linear system can be written as









2 1 0

6 2 6

−4 −3 9

















x1

x2

x3









=









4

20

3









,

so








x1

x2

x3









=









2 1 0

6 2 6

−4 −3 9









−1







4

20

3









,

using Gaussian Elimination to find the inverse of the coefficient matrix,









2 1 0 | 1 0 0

6 2 6 | 0 1 0

−4 −3 9 | 0 0 1









−→
row(ii)−3×row(i),row(iii)+2×row(i)

row(iii)−row(ii), 1
2
×row(iii)









2 1 0 | 1 0 0

0 −1 6 | −3 1 0

0 0 1 | 5
3

−1
3

1
3









−→
row(ii)−6×row(iii),(−1)×row(ii)
1

2
×row(i)









1 0 0 | −6 3
2

−1

0 1 0 | 13 −3 2

0 0 1 | 5
3

−1
3

1
3









,

2



therefore,









x1

x2

x3









=









−6 3
2

−1

13 −3 2
5
3

−1
3

1
3

















4

20

3









=









3

−2

1









.

Problem 3. Determine the definiteness of the following symmetric matrices:

A1 =









5 2 1

2 4 −1

1 −1 2









, A2 =









1 2 0

2 4 5

0 5 6









Solution : (1) A1 is positive definite because the first order leading principal minor

is 5, which is positive, the second order leading principal minor is

∣

∣

∣

∣

∣

5 2

2 4

∣

∣

∣

∣

∣

= 16 > 0

and the third order leading principal minor is

det(A1) = 5×(−1)1+1×

∣

∣

∣

∣

∣

4 −1

−1 2

∣

∣

∣

∣

∣

+2×(−1)1+2×

∣

∣

∣

∣

∣

2 −1

1 2

∣

∣

∣

∣

∣

+1×(−1)1+3

∣

∣

∣

∣

∣

2 4

1 −1

∣

∣

∣

∣

∣

= 5 × 7 − 2 × 5 − 6 = 19 > 0.

(2) A2 is indefinite because the first order leading principal minor is 1, which is

positive, the second order leading principal minor is

∣

∣

∣

∣

∣

1 2

2 4

∣

∣

∣

∣

∣

= 0

but the third order leading principal minor is

det(A2) = 1 × (−1)1+1 ×

∣

∣

∣

∣

∣

4 5

5 6

∣

∣

∣

∣

∣

+ 2 × (−1)1+2 ×

∣

∣

∣

∣

∣

2 5

0 6

∣

∣

∣

∣

∣

= 24 − 25 − 2 × 12 = −25 < 0.
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Problem 4. Let

x =















x1

x2

...

xn















, C =















c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

...
...

cn1 cn2 · · · cnn















,

show

(1)
∂xT C

∂x
= C, (2)

∂xT x

∂x
= 2x.

Proof : (1) Firstly compute

(

x1 . . . . . . xn

)















c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

...
...

cn1 cn2 · · · cnn















=
(

∑n

t=1 xtct1

∑n

t=1 xtct2 · · ·
∑n

t=1 xtctn

)

,

by definition of the partial derivative matrix for vector functions, we have

∂xT C

∂x
=















∂
∑

n

t=1
xtct1

∂x1

∂
∑

n

t=1
xtct2

∂x1

· · ·
∂
∑

n

t=1
xtctn

∂x1

∂
∑

n

t=1
xtct1

∂x2

∂
∑

n

t=1
xtct2

∂x2

· · ·
∂
∑

n

t=1
xtctn

∂x2

...
...

...
...

∂
∑

n

t=1
xtct1

∂xn

∂
∑

n

t=1
xtct2

∂xn

· · ·
∂
∑

n

t=1
xtctn

∂xn















=















c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

...
...

cn1 cn2 · · · cnn















= C.

(2) It is easy to see that

xT x = x2
1 + x2

2 + x2
3 + ... + x2

n =

n
∑

i=1

x2
i .

Therefore, by the definition, we have

∂xT x

∂x
=















∂
∑

n

i=1
x2

i

∂x1

∂
∑

n

i=1
x2

i

∂x2

...
∂
∑

n

i=1
x2

i

∂xn















=















2x1

2x2

...

2xn















= 2x.

4


